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An approach has been developed for calculating the vibrational spectra of linear methine-bridged tetrapyrroles
constituting the chromophoric sites of various photoreceptor proteins. Using Pulay’s scaling procedure (Pulay,
P.; Fogarasi, G.; Pongor, G.; Boggs, J. E.; Vargha, A.J. Am. Chem. Soc.1983, 105, 7037), scaling factors
were determined for a set of 10 training molecules which mimic structural elements of the tetrapyrrole target
molecules. Geometries and force fields were calculated at three theoretical levels, i.e., by the Hartree-Fock
(HF), second-order Møller-Plesset perturbation (MP2), and B3LYP density functional theory methods using
6-31G* basis sets. A global optimization yielded sets of 14, 11, and 10 scaling factors for HF, MP2, and
B3LYP, respectively. B3LYP provided the best results both with regard to the geometries and the vibrational
frequencies. The root-mean-square deviation for the calculated frequencies was 11 cm-1 for B3LYP as compared
to 13 and 17 cm-1 for HF and MP2, respectively. On the basis of the Morse model for an anharmonic oscillator,
an expression was derived for correcting scaling factors for the anharmonicity changes in (deuterio) isotopomers.
The effects of hydrogen bonding interactions via N-H‚‚‚OdC bonds on the structures and vibrational spectra
were studied in the case of maleimide. For the N-H stretching, deformation, and out-of-plane wagging
vibrations, modifications of the scaling factors are required in order to reproduce the vibrational spectra of
the hydrogen bonded dimer. The IR and Raman intensities calculated by the B3LYP method were found to
agree well with experimental spectra. For the Raman intensities, a fourth-order differentiation formula was
derived for the numerically accurate calculation of polarizability derivatives with respect to Cartesian
displacements, by using the finite field method.

Introduction

Linear methine-bridged tetrapyrroles constitute an important
class of prosthetic groups in protein systems with quite different
biophysical functions due to the structural flexibility of these
chromophores.1 In photosynthetic antenna pigments linear
tetrapyrroles are organized in the protein matrix in a way which
allows for a highly efficient energy transfer to the reaction
centers.2 While these processes require a well defined and fixed
chromophore structure, the function of the photoreceptor phy-
tochrome, which is involved in steering photomorphogenic
processes, is intimately associated with extended structural
changes of the protein-bound tetrapyrrole (Figure 1).3 This 124-
kDa chromoprotein utilizes light as a source of information
inasmuch as a photoinduced reaction cycle of the protein
eventually leads to the conversion of the inactive (Pr) to the
active form (Pfr) of phytochrome capable of triggering a
physiological reaction cascade. Evidently, the elucidation of the
structural changes of the chromophore during the reaction cycle
is a prerequisite for understanding the mechanism of activation
of phytochrome.

Even for the stable states Pr and Pfr, however, the structure
determination by X-ray crystallography and NMR spectroscopy
is not (yet) possible due to the lack of adequate crystals or due
to the protein size. Therefore, other spectroscopic techniques
have to be employed. Among these, resonance Raman (RR)
spectroscopy represents the most promising approach since it
selectively probes the vibrational band pattern of the chro-

mophore upon excitation in resonance with its electronic
transition.4 Moreover, this technique is appropriate also to study
intermediates. In fact, high quality RR spectra have been
obtained from the parent states Pr and Pfr as well as from several
intermediates formed during the reaction cycle.5

These RR spectra include detailed information about the
configuration and conformation of the protein-bound tetrapyrrole
and its interactions with the immediate protein environment.
Moreover, RR spectra can reflect even subtle structural differ-
ences of the active sites in chromoproteins which are beyond
the resolution of X-ray data. With regard to the information
content, vibrational spectroscopies can thus well compete with
diffraction techniques and NMR spectroscopy. However, the
current state of extracting this information from the spectra is
by far more advanced in the latter methods. Hence, decoding
of the RR spectra of phytochrome is not only a prerequisite for* Corresponding author.

Figure 1. Structural formula of the protein-bound phytochromobilin
chromophore.
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the elucidation of structure-function relations in this protein,
but it is also a challenge since a general strategy is needed for
the analysis of the vibrational spectra of large, highly substituted
and nonsymmetric molecules such as linear tetrapyrroles.

In principle, there are two approaches to tackle this problem.
Empirical force fields have been employed for the normal-mode
analysis of cyclic tetrapyrroles, i.e., porphyrins.6,7 The high
symmetry of this class of compounds and the large body of
experimental data, including spectra of numerous isotopomers,
significantly facilitate the vibrational assignments. However,
these advantages do not exist for linear tetrapyrroles so that an
empirical approach has been attempted so far only for the
pyrromethenone fragments of bilirubin.8 Calculations of the
force fields by quantum chemical methods are clearly a viable
alternative for linear tetrapyrroles.

For large molecules which are comparable in size to linear
tetrapyrroles semiempirical approaches were the only applicable
methods for a long time.9 However, the rapid progress of
computational facilities as well as the availability of efficient
software now opens the possibility to apply more demanding
computational methods to such molecules.10-12

The crucial problem of quantum chemical force field calcula-
tion, both in semiempirical and ab initio methods, is to account
for errors which result from deficiencies of the quantum
mechanical method and from the harmonic approximation.13

These errors can be partially corrected by scaling procedures.
While scaling of the calculated frequencies by a single factor
already significantly improves the agreement with experimental
frequencies,14 a physically substantiated method, pioneered by
Pulay and co-workers, is based on scaling of the force field
itself.15 The underlying idea is that the intrinsic error of force
constants is systematic and specific for the internal coordinates
involved so that the corresponding scaling factors should be
the same whether the force constants refer to the same or to
quite similar internal coordinates. This model implies that
scaling factors are transferable between different molecules that
include similar internal coordinates. Consequently, these scaling
factors can be determined for molecules for which a complete
vibrational assignment is straightforward, and they can then be
transferred to the target molecules.

Our first attempts of a vibrational analysis of a linear
tetrapyrrole, biliverdin dimethyl ester IX (BVE) (Figure 2), were
guided by this concept.16 We had chosen this compound as a
target molecule in view of its similar constitution with respect
to phytochromobilin, the tetrapyrrole chromophore of phyto-
chrome. It is one of the few linear tetrapyrroles for which a
crystal structure has been determined.17 In addition, specifically
deuterated isotopomers of BVE can be synthesized and con-
figurational isomers can be prepared which is of particular
importance for extending the experimental data set.18 In the BVE
study,16 we have employed the semiempirical AM1 method to
calculate the force field. Preliminary scaling factors were
obtained from the vibrational analysis of a set of small molecules
representing BVE “fragments” (pyrrole, maleimide, ethene, and
acetic acid). Calculated RR and IR intensities afforded additional
criteria for plausible assignments of the observed bands which,
up to now, only in a few cases had to be revised in view of
more recent experimental data of BVE isotopomers.18 Despite
the first encouraging results, the limitations of this study became
evident, partly because the number of “fragment” molecules
was relatively small. Moreover, it is meanwhile well established
that the errors in semiempirical calculations are far less
systematic than in ab initio calculations,19 casting some doubt
on the transferability of scaling factors within the AM1

approach. Finally, intermolecular interactions, i.e., hydrogen
bonding interactions, have not been considered although these
are known to be relevant both in solutions and in the crystal.20,21

In an attempt to overcome these limitations, we have now
developed an approach including several conceptional and
methodological improvements. First, the force fields were
calculated at the ab initio Hartree-Fock (HF) and density
functional theory (DFT) levels. Among the various density
functional forms proposed we have chosen Becke’s three-
parameter hybrid functional (B3LYP)22 which yields both
excellent geometries and vibrational frequencies for compounds
containing first row elements.23-28 In particular, Rauhut and
Pulay29 have shown that errors of vibrational frequencies
obtained with B3LYP are also systematic and, hence, can be
corrected by appropriate scaling procedures. Besides the HF
and B3LYP methods, we have also employed the second-order
Møller-Plesset perturbation approach (MP2) with frozen core
orbitals even though we did not intend to apply this method to
our target molecules due to the high requirements for compu-
tational time and disk storage. Second, following Rauhut and
Pulay,29 we have established a set of scaling factors by globally
fitting to the vibrational spectra of 10 small molecules, i.e., the
training set, which represent the structural motifs of methine-

Figure 2. Structural formulas of the target, test, and training molecules.
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bridged tetra-(oligo-)pyrroles. Using this “global” fit procedure
the probability of running into local minima and to obtain
artifacts is largely reduced. Third, IR and Raman intensities were
calculated to support the vibrational assignment. Fourth, hydrogen-
bonding interactions were considered for selected training set
molecules, and scaling factors were derived for the NH group
in hydrogen-bonded systems.

This approach results in a global set of scaling factors whichs
as will be shown in subsequent publications30sis appropriate
to predict accurately the IR and Raman spectra of various
dipyrroles (test molecules). For their hydrogen-bonded dimers
modifications of the scaling factors are only required for the
NH groups involved in hydrogen bonding. The approach
therefore promises to describe the vibrational spectra of BVE
and other tetrapyrroles (target molecules) as well.

The present paper is divided into four sections. At first, we
discuss our choice of training molecules which are regarded to
be appropriate for determining a global set of scaling factors
for the target molecules (section I). The results of the geometry
optimization for the individual training molecules in comparison
with experimental data are summarized in section II. Subse-
quently, we present the results of the force field scaling and
the construction of a global set of scaling factors (section III).
Finally, we outline the determination of the IR and Raman
intensities (section IV).

In this paper, emphasis is laid on the generalization of the
results obtained from the individual compounds while details
of their vibrational analysis and the underlying quantum
chemical calculations will be published elsewhere.30a

Methods

All quantum mechanical calculations were carried out on a
Dec Alpha workstation AS 600 5/333 using the program
package GAUSSIAN94.31 Programs developed in our laboratory
were employed for the normal-mode analysis as well as for the
determination of the scaling factors and the evaluation of the
B3LYP Raman intensities.

Geometries were optimized with the TIGHT option of the
GAUSSIAN94 program. The FINE GRID option was used for
the numerical integrations. With finer grids (or larger spherical
grids) an improvement was achieved only for the six zero-
frequency modes while the normal-mode frequencies were not
affected considerably. On the other hand, such grids lead to a
significant increase of the computational time, which would be
a serious obstacle for extending the calculations to larger
molecules.

In preliminary calculations of selected training molecules we
have compared various basis sets. Using 6-31G basis sets
without polarization functions, distinct deviations of the calcu-
lated geometries from the experimental data were found. For
instance, the pyramidalization angle of the lactame unit in
pyrrolidone (a model for ring A in phytochromobilin, see Figure
1) was calculated too low by all three methods (2.4-3.4°),
whereas the 6-31G* basis provided a substantially better
agreement (9.4-11.6°) with the experimental data (12.1°).32 No
further improvements were achieved with the 6-31G** basis
(8.8-11.4°), the considerably larger computational efforts of
which were therefore not justified. Furthermore, deficiencies
noted for hydrogen-bonded systemssas will be discussed
belowscould not be removed even with this basis set. Thus,
the 6-31G* basis was employed for all calculations used to
construct global sets of scaling factors. The results obtained with
this basis set will be referred to by the short-hand notations
HF, B3LYP, and MP2.

I. Target, Test, and Training Molecules.The hierarchy of
the molecules constituting the benchmarks of the project is
illustrated in Figures 1 and 2. Thetarget moleculesdo not only
include BVE as a model for phytochromobilin but also
phycocyanobilin (PCB) which differs from BVE in ring A
(chiral carbon andexo-ethylidenic group instead of an endocy-
clic double bond) and in the substitution pattern of ring D (ethyl
vs vinyl). PCB is of considerable value as a model for the
protein-bound tetrapyrrole in phytochrome since in contrast to
biliverdin, it has been successfully used in reconstitution
experiments with phytochrome apoprotein resulting in structural,
photochemical, and kinetic properties very similar to those of
the native holoprotein.33

The set oftest moleculescomprised four methine-bridged
dipyrroles. This set is to be used to check the reliability of the
approach and the quality of the global scaling factors. The test
compounds represent building blocks of the target molecules
(Figures 1 and 2). Whileendo-neoxanthobilirubinic ester (endo-
NBRE) and 3,4-dimethylpyrromethenone (DMPon) mimic the
A-B dipyrrole unit of the tetrapyrrole,exo-NBRE includes the
C-D dipyrrole unit except for the pyrrolenine structural motif
(ring C). The latter, however, is represented by hexamethylpyr-
romethene (HMPM), a model for the B-C unit.

Thetraining moleculesserve for the determination of scaling
factors which are transferable to the test and target molecules.
Hence, the principal criterion for choosing the training molecules
is that they include the same or similar internal coordinates as
the target molecules. This does not necessarily imply that the
chemical constitution of such a molecule must be fully contained
in the target molecules. However, essential structural elements
must be the same or, at least, very similar. A second criterion
is the availability of accurate structural data for a performance
check of the quantum mechanical geometry calculation. Finally,
experimental IR and Raman spectra of the compounds in well-
defined states (preferentially monomeric states) are needed since
the determination of the scaling factors requires a safe vibra-
tional assignment. In this way, we have selected a series of 10
different compounds (Figure 2) which together with the deu-
terated isotopomers constitute 13 sets of vibrational frequencies.

Heterocyclic Compounds.The only pyrrole-derived ring
among the target molecules is ring B which in the tetrapyrroles

Figure 3. Experimental structures of ring A of BVE17 and of HMPM30b

in comparison with those of various heterocycles.34-37
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possesses an asymmetric substitution pattern including two
unsaturated side chains. Model compounds which would mimic
such a conjugated pyrrole are not stable. The effect of conjugated
substituents on the pyrrole geometry can readily be seen by
comparing the bond length patterns in pyrrole and HMPM
(Figure 3). These experimental trends should be reproducible
by the quantum mechanical calculations and, therefore, should
not require specific training molecules. Indeed, the structure of
HMPM calculated at the B3LYP level is in very good agreement
with that determined by X-ray analysis.30b

The choice of an appropriate model for the pyrrolenine ring
C is not straightforward. We have chosen pyrazole and
imidazole which can be considered as imino-substituted pyr-
rolenines (Figure 3). Although in both compounds the bond
length alternation is less pronounced than in ring C, a similar
pattern of bond lengths and bond angles suggests nevertheless
that these compounds are satisfactory models. Since pyrazole
and imidazole may be viewed, alternatively, as aza-substituted
pyrroles, they also serve as models for ring B.

Training set molecules which are closely related to the rings
A and D are lactams for which we have chosen maleimide and
uracil. In fact, the available structural data (Figure 3) reveal
striking similarities between maleimide and BVE which both
form hydrogen-bonded dimers in the solid state.17,34 The six-
membered ring of uracil is of particular interest as it does not
only include the lactam unit but also an additional conjugated
amide motif reminiscent of the C-N bond adjacent to the
methine bridge in BVE (DMPon,endo-NBRE, andexo-NBRE).

Hydrocarbons and Esters.Ethane and propane include
essentially all internal coordinates which are involved in the
methyl, ethyl, and propionate side-chains. Two compounds were
used to mimic the propionic ester group. Besides methyl acetate
as a model for the acetoxy group we included ethyl acetate as
a structural isomer of methyl propionate in order to increase
the data set. Butadiene is taken as a model not only for the
methine bridges but also for the vinyl substituents in BVE. In
contrast to ethene which was chosen in our previous study,16

the open-chain conjugated system of butadiene may more
closely model the conjugated methine bridges and vinyl groups
of the target molecules.

II. Geometry Calculations. To assess the performance of
the quantum mechanical methods, the structures calculated for
the training molecules at the HF, MP2, and B3LYP levels were
compared with experimental data. In general, gas phase
structural data were used for comparison except for ethyl acetate
for which only X-ray crystal data have been reported.38

Preferably,rs structures were used which are close to there

structures obtained by quantum chemical calculations.39 These
geometries are available for pyrrole,35 imidazole,36 pyrazole,37

and propane.40 Otherwise, r0R and rz structures, which were
obtained by electron diffraction and spectroscopic methods,
respectively, were employed. These structures are corrected for
vibrational motion and extrapolated to 0 K. The mean devia-
tions41 between calculated and experimental X-Y and X-H
bond lengths are compiled in Table 1.

Heterocycles.Pyrrole, imidazole, and pyrazole provide a
unique subset of training molecules since the rs structures have
been determined for all of them. The calculations yield planar
ring structures which are in line with the experimental findings.

For the bond lengths of the heavy-atom skeleton, B3LYP
calculations yield an excellent description with only small
deviations from the experimental values. There is a subtle
overestimation of the CdC bonds in pyrazole and imidazole
(∆R≈ + 0.008 Å) but not in pyrrole (∆R ) - 0.004 Å), ruling
out the hypothesis that these deviations reflect a general
tendency. For the single bonds, the deviations are smaller and
do not show a systematic pattern. Good results are also obtained
with MP2, although the average errors for the heterocycles are
somewhat larger than with B3LYP (0.008 Å vs 0.005 Å). The
larger deviations are mainly due to an overestimation of the
CdC and CdN lengths in pyrazole and imidazole. Pyrrole
constitutes an exception inasmuch as MP2 yields a striking
agreement (∆R ) 0.002 Å) as already found by Simandiras et
al.48 The results obtained at the HF level are clearly worse as
all calculated bond lengths (except for the Câ-Câ′ bond in
pyrrole) are too long. In particular, the double bonds deviate
on the average by as much as 0.022 Å.

B3LYP provides the best results also for the bond lengths
involving the hydrogen atoms, although HF and MP2 perform
almost equally well. There is a systematic overestimation of
the bond lengths at the B3LYP and MP2 levels, in particular
of the N-H bonds by 0.012 and 0.014 Å, respectively, whereas
HF underestimates N-H and C-H bond lengths.

With regard to the calculated bond angles, again the best
results are obtained with B3LYP (mean deviation 0.3°), while
the quality of the MP2 and HF results is slightly inferior (0.4°
in both cases).

Lactams.For maleimide42 and uracil,43 the deviations for both
bond lengths and bond angles are larger than for the heterocyclic
compounds. For the present comparison, we only considered
the geometry of the heavy-atom frame since the relative
positions of the hydrogens were not determined directly in the
electron diffraction studies. The main contribution to the average
bond length deviations is associated with the C-N single bonds
adjacent to the CdC double bonds. For each method, the
calculated length of this C-N bond is too small. Systematic
discrepancies between predicted and experimental values are
also be observed for some bond angles. The mean deviations

TABLE 1: Mean Deviations of Calculated Bond Lengths (in angstroms) from the Experimental Valuesa

HF MP2 B3LYP

X-Y X-H X-Y X-H X-Y X-H

pyrrole35 0.016 0.006 0.002 0.008 0.006 0.007
imidazole36 0.015 0.008 0.008 0.007 0.004 0.007
pyrazole37 0.018 0.007 0.011 0.008 0.004 0.006
maleimide42 0.021 0.012 0.008
uracil43 0.019 0.011 0.008
methyl acetate44,45 0.022 0.009 0.010
ethyl acetate38 0.018 0.016 0.014
butadiene46 0.016 0.016 0.003 0.006 0.003 0.006
ethane47 0.005 0.010 0.006 0.003 0.001 0.000
propane40 0.002 0.007 0.000 0.003 0.006 0.004
average 0.016 0.010 0.008 0.006 0.006 0.006

a Abbreviations: X and Y refer to C, N, or O atoms. Experimental data were taken from the literature.
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for bond angles are 1.9° and 1.5° for maleimide and uracil,
respectively, and they are about the same for all three methods.
These large deviations are mainly due to the contributions from
specific angles such as the N-CdO angle in maleimide and
several ring angles in uracil, for which experimental and
theoretical values differ by about 2-3°.

Esters and Hydrocarbons.For methyl acetate, gas-phase
structural data are available. However, there are notable dis-
crepancies between the structures reported. The electron dif-
fraction study by O’Gorman et al.44 yielded a C(sp3)-O bond
length of 1.46 Å which was noted to be unusually long. In fact,
it is not reproduced by the calculations. More recently, Pyckhout
et al.,45 who combined electron diffraction and calculated HF/
4-21G data in the structure analysis, reported a shorter bond
length. With respect to these results, the mean deviations of
the present calculations are generally smaller. In this particular
case, they are somewhat higher for B3LYP than for MP2 (Table
1), although this is due solely to a 0.019 Å deviation for the
C(sp3)-C(sp2) bond length. For this specific bond, an incon-
sistency has already been noted by Pyckhout et al.45 with regard
to the empirical correction needed to convert the rg into the rR

o

structure.
For ethyl acetate, only X-ray structural data are available for

crystals in which the ester is included as a solvate.38 Hence,
the underlying intermolecular interactions and their effect on
the ester structure may be the main reason for the substantial
deviations of the calculated bond lengths reflected by average
values of 0.014, 0.016, and 0.018 Å for B3LYP, MP2, and HF,
respectively. In particular, the calculated C(sp2)-O single bond
length is too long at the B3LYP and MP2 levels as compared
to the experimental value. This discrepancy is in contrast to
methyl acetate for which the calculated value of this bond length
agrees very well with the gas phase structure.

Butadiene46 appears to be an instructive example for the
deficiencies of the HF approach as compared to MP2 or B3LYP.
While the latter two methods provide an excellent agreement
with the experimentally determined bond lengths (CdC, C-C,
C-H), HF overestimates the C-C and CdC bond length
alternation. Hence, the overall agreement of the HF calculations
is much better for the saturated hydrocarbons, but still beyond
the quality of the MP2 and B3LYP results.

OVerall Comparison of the Computational Methods.The
comparison of the data in Table 1 demonstrates that inclusion
of electron correlation effects, at either the MP2 or the B3LYP
level, significantly improves the quality of the results. Compared
to the HF approximation, the deviations are reduced by a factor
of 2-3. The performance of the B3LYP method is somewhat
better than that of the MP2 method. This is particularily true
for the heterocyclic compounds with well determined structures
where the B3LYP results are close to the experimental accuracy.
Indeed, it has been shown by Martin et al.24 that geometries
calculated by using the B3LYP functional and a basis compa-
rable to the 6-31G* set may be even more accurate than those
obtained from highly correlated coupled cluster calculations with
larger basis sets, due to an error compensation. In general, the
ranking of the theoretical methods is in line with that from
previous comparative studies of organic compounds containing
first-row elements.23-28

III. Scaling of the Force Fields.A crucial step in determining
the scaling factors is the choice of the experimental data set.
We critically considered available experimental data by taking
into account the specific experimental conditions and the
accuracy of the measurements as well as the calculated data
(frequencies, band intensities, and mode compositions) obtained

in this work and reported in the literature. The availability of
gas phase or matrix IR (Raman) data and a reliable vibrational
assignment were essential criteria for the selection of training
molecules. It should be mentioned that the quality of the fits of
the scaling factors per se did not provide an additional criterion
for the assignment. This is particularly true for ambiguities
associated with closely spaced modes. In such cases, equally
good fits were obtained with either assignment since the
individual scaling factors did not differ strongly from each other.
Nevertheless, we did not omit any modes from the fitting
procedure even if the calculated frequencies revealed substan-
tially larger deviations from the experimental values as com-
pared to the average deviation. A total of 301 experimental
frequencies was finally included in the least-squares procedure.
The detailed vibrational analyses of the various training set
molecules are discussed elsewhere.30a

Scaling of the calculated force fields followed the general
procedure introduced by Pulay and co-workers.15 The scaled
force constants(Fij)σ, which refer to internal coordinatesi and
j as defined by Pulay et al.,49 are obtained according to eq 1,

whereFij are the calculated (unscaled) force constants andσi

andσj are the scaling factors. The total number and the kind of
scaling factors were selected in an iterative way for each of the
three methods. As shown recently by Rauhut and Pulay,29 the
scaling factors in DFT calculations for several diagonal force
constants tend to assume the same values. For instance, for
organic compounds involving the first-row heavy atoms X, Y,
and Z, i.e., C, N, O, the X-Y bond stretching and the XYZ
bond angle deformation force constants required only one
scaling factor each. Thus, the scaling factors are well transferable
and their number can be kept small. In the present study, the
reduced parameter set of Rauhut and Pulay29 served as a
guideline for the construction of the initial sets. During the fitting
process this parameter set was further modified either by
separating into different scaling factors in order to reduce
systematic deviations or by additional grouping of scaling
factors. The final results are listed in Table 2.

The values of the scaling factors in MP2 and B3LYP are
much closer to unity than those in HF. This well-known
tendency reflects the intrinsic consideration of electron correla-
tion effects by these methods, which leads to a substantial
lowering of the systematic errors of force constant calculations.
Note that the B3LYP scaling factors display a much smaller
deviation from unity than the MP2 values. The number of
different scaling factors is reduced from 14 in HF to 11 and 10
in MP2 and B3LYP, respectively. Whereas at the B3LYP level
single and double bond stretching force constants between heavy
atoms can be scaled by the same factor, the HF and MP2 force
constants require two different scaling factors. This is also true
for the C-H and N-H stretching force constants. The MP2
method, however, is superior with regard to the scaling of the
out-of-plane (oop) vibrations (one factor), since two and three
different factors are required in B3LYP and HF, respectively.

In general, the values of our B3LYP scaling factors agree
well (within less than 1%) with those obtained by Rauhut and
Pulay.29 However, for the torsional and the NH deformation
(NH def) force constants there are larger discrepancies, with
9.6%, 3.3%, and 12.3% deviations for the NH deformation,
single bond torsion, and conjugated bond torsion, respectively.
One should note that Rauhut and Pulay29 employed only a single
scaling factor for all oop vibrations whereas our set of training
molecules required an additional scaling factor for the NH oop

(Fij)
σ ) xσi(Fij)xσj (1)
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vibration. We found, furthermore, that a specific NH def scaling
factor improved the global fit.

In a least-squares treatment, the standard deviations of the
optimized parameters are an approximate measure of the
uncertainty in each parameter. These values are shown in Table
2 for the B3LYP scaling factors. In general, the standard
deviations are small indicating that our data set of experimental
frequencies was sufficiently large to determine the scaling
factors reliably. A greater uncertainty, however, is noted for
the single bond torsion suggesting that a single scaling factor
for single and double bond torsion might be applicable as well.
Despite the fact that for this 9-parameter set the rms deviation
of the global fit is only slightly increased, we preferred the 10-
parameter set to provide a more flexible parametrization for ring
A of tetrapyrroles which may either be fully conjugated or
partially unsaturated (Figures 1 and 2).

An ambiguity is associated with the assignment of some
internal coordinates to specific scaling factors when using the
definitions by Pulay et al.49 For instance, in the internal
coordinates of CH2 and CXY scissoring, the HCH def and XCH
def vibrations are mixed with different weights in each
coordinate. In these cases, we assigned the HCH def (XCH def)
scaling factor to the coordinate with the largest weighting factor
for the HCH def (XCH def) vibration. The small standard
deviations for these scaling factors indicate that only a marginal
error is introduced by this approximation. A rigorous treatment
would require a transformation from Cartesian to internal
coordinates using a transformation matrix which depends on
the scaling factors. Furthermore, the formulas for the analytic
derivatives of the frequencies with respect to the scaling factors
required for parameter optimization50 would have to be general-
ized. It should be mentioned that recently a procedure has been
presented for the direct scaling of primitive valence force
constants.51

Anharmonicities and Deuterated Isotopomers.For some of
the training molecules, also deuterated isotopomers were
included in the determination of the scaling factors. Therefore,

it had to be taken into account that the scaling factorsσi correct
for both anharmonic effects and deficiencies of the quantum
chemical method. Assuming that these corrections are indepen-
dent of each other,σi may be written as a product of two factors,
i.e.,

where the superscriptsq anda refer to the quantum chemical
and the anharmonic corrections, respectively. On the basis of
the Morse oscillator model a correction factor (σXD)c for the
X-D stretching coordinate is derived in Appendix I which is
given by eq 3,

whereµXH and µXD are reduced masses andxe,XH relates the
anharmonic frequencyνXH of the Morse oscillator to the
harmonic frequencyωe,XH according to eq 4,

Multiplying (σXD)c with the scaling factorσXH as obtained by
the fitting procedure for the nondeuterated species, one readily
determines the scaled force constant (FXD)σ which holds for the
deuterated isotopomers according to eq 5,

According to eq 3, anharmonicity effects are particularly
pronounced for deuteration whereas those due to substitutions
by other isotopes, e. g.,13C and15N, can be neglected. Moreover,
the anharmonicity is relatively high for X-H stretchings and
hence, corrections for X-D stretchings are not negligible. Such
effects are much less pronounced, for instance, for X-H/X-D
deformations. Also, some oop deformation and torsional modes

TABLE 2: Globally Optimized Scaling Factors for the Set of Training Moleculesa

B3LYP HF MP2

internal coordinate σi
b internal coordinate σi internal coordinate σi

X-Y, XdY str 0.9242 X-Y str 0.8387 X-Y str 0.8860
(0.0009)

C(N)H str 0.9153 CH str 0.8259 CH str 0.8815
(0.0003)

XYZ angle def 0.9960 XYZ angle def 0.8343 XYZ angle def 0.9894
(0.0023)

HCH def 0.9168 HCH def 0.7861 HCH def 0.8771
(0.0009)

XCH def 0.9498 XCH def 0.8097 XCH def 0.9145
(0.0012)

oop (not NH) 0.9870 oop (not NH, CdO) 0.7428 oop 1.0654
(0.0015)

single bond torsion 0.9668 single bond torsion 0.8520 single bond torsion 0.8488
(0.0112)

conj bond torsion 0.9482 conj bond torsion 0.8120 conj bond torsion 0.9755
(0.0026)

NH def 0.9693 NH def 0.7624 NH def 0.9579
(0.0038)

NH oop 1.0120 NH oop 0.8828
(0.0051)

XdY str 0.7427 X)Y str 0.9219
NH str 0.8024 NH str 0.9110
CdO oop 0.8077
C-O ester str 0.7314

a Abbreviations: X, Y, and Z refer to C, N, or O atoms; str, stretch; def, deformation; oop, out-of-plane; conj, conjugated.b Standard deviations
are given in parentheses.

σi ) (σi)
q(σi)

a (2)

(σXD)c ) (1 - 2xe,XHxµXH

µXD

1 - 2xe,XH
)2

(3)

νXH ) ωe,XH(1 - 2xe,XH) (4)

(FXD)σ ) σXH(σXD)cFXH (5)

294 J. Phys. Chem. A, Vol. 103, No. 2, 1999 Magdóet al.



are known to exhibit significant anharmonicities. However, as
their frequencies are much lower, corrections for these anhar-
monicity changes would account for frequency differences of
less than 10 cm-1, which in turn is smaller than the root-mean-
square (rms) deviation of the calculated frequencies for the
training molecules (see below). Thus, in this study we have
restricted the anharmonicity corrections to the X-D stretchings.

Anharmonicity constantsXCH (XCH ) ωe,CHxe,CH) of 58.5 cm-1

have been reported for benzene52 and of 53.9 and 59 cm-1 for
pyrrole.53,54 Assuming a mean value forxe,CH of 0.0183, one
obtains (σCH)a ) 0.928 and (σCD)c ) 1.0203. The anharmonicity
constants of the N-H stretching modes exhibit essentially the
same value (XNH ≈ 69 cm-1) in a variety of compounds
including secondary amides, lactams, pyrrole, and imidazole.55

Taking xe,NH ) 0.0190, the corresponding value for (σNH)a

(0.925) is slightly smaller and that for (σND)c (1.0214) is slightly
larger than those for the C-H stretching.

The fitted scaling factors (σXH) implicitly account for the
intrinsic anharmonicities of the C-H and N-H bonds. Thus,
the extension of these scaling factors to the deuterated isoto-
pomers requires, independent of the underlying quantum chemi-
cal method, just two correction factors, (σCD)c and (σND)c, which
convert the scaled diagonal force constants of the C-H and
N-H stretchings into the corresponding force constants of the

X-D stretchings. The good performance of this approach is
illustrated for the N-H/N-D and C-H/C-D stretchings of
pyrrole isotopomers (Table 3). The mean deviation is 17 cm-1

when the anharmonicity changes upon deuteration are neglected.
This is clearly larger than the mean deviation of 11 cm-1

averaged over all training set molecules. However, when (σCD)c

) 1.0203, is adopted, the rms error for the stretching modes is
lowered to 10 cm-1. A similar improvement from 31 to 7 cm-1

is achieved when the anharmonicity correction is applied to
N-D stretchings (Table 4).

Limitations of this approach based on the Morse oscillator
model become apparent when experimental values forxe,XD are
compared with those derived from the model. For benzene, an
xe,CD value of 0.0134 is calculated from eq A6 (Appendix I),
while the experimental value is ca. 0.0125.52 The xe,NH values
for N-methyl propionamide and pyrrole are 0.0192 and 0.0187,
respectively. The predicted values forxe,XD of 0.0140 and 0.0137
have to be compared with the corresponding experimental values
of 0.0145 and 0.0111, respectively.55 Despite these limitations,
the Morse oscillator approximation approach appears to account
satisfactorily for the anharmonic effects of the X-H/X-D
stretchings. In the fit procedure, however, we excluded C-D
and N-D stretching frequencies of deuterated isotopomers from

TABLE 3: X -H Stretching Modes (in cm-1) of Pyrrole and Deuterated Isotopomersa

A1 B1

symmetry νNH(ND) νCH(CD) νCH(CD) νCH(CD) νCH(CD)

pyrrole exptl 3527 3148 3125 3140 3116
B3LYP 3513 3144 3123 3139 3111
difference -14 -4 -2 -1 -5

pyrrole-ND exptl 2606 3148 3126 3142 3115
B3LYP 2607 3144 3123 3139 3111
difference 1 (-2) -4 (-4) -3 (-3) -3 (-3) -4 (-4)

pyrrole-D4 exptl 3531 2375 2340 2305
B3LYP 3513 2368 2333 2357 2320
difference -18 (-18) -7 (-29) 17 (6) 15 (-8)

pyrrole-D5 exptl 2607 2376 2325 2347 2305
B3LYP 2608 2368 2333 2356 2320
difference 1 (-26) -8 (-31) 8 (-14) 9 (-13) 15 (-8)

a The experimental data were taken from ref 56. Calculated frequencies for the deuterated isotopomers were obtained after anharmonicity correction
(differences between the experimental values and those calculated without anharmonicity correction are given in parentheses).

TABLE 4: NH Stretching, Deformation, and Out-Of-Plane Modes (in cm-1) for Various Training Set Moleculesa

NH stretching NH deformationb NH out-of-plane

exptl calcd difference exptl calcd difference exptl calcd difference

pyrrole57 3531 3513 -18 1424 1435 11 475 450 -25
1134 1139 5

pyrrole-ND56 2606 2607 1 906 914 8 372 354 -18
(2580) (-26) 827 836 9

pyrazole58 3523 3509 -15 1531 1537 6 516 499 -17
1447 1459 12

pyrazole-ND58 2640c 2606 955 960 5 406 398 -8
(2579) 858 871 13

imidazole59 3517 3494 -23 1407 1413 6 509 504 -5
1085 1074 -11

maleimide60,61 3482 3492 10 1346 1328 -18 504 521 17
1285 1295 -10

maleimide-ND61,62 2600 2592 -8 1218 1191 -26 375 385 10
(2565) (-35) 797 794 -3

uracil63 3484 3483 -1 1472 1473 1 660 688 28
3435 3448 13 1389 1383 -6 551 564 13

uracil-1,3-D64,d 2593 2582 -11 918 917 -1 501 525 24
(2555) (-38) 821 813 -8 420 428 8

2549 2555 6
(2528) (-21)

a Calculated frequencies were obtained by B3LYP; values without anharmonicity correction are given in parentheses.b Only the two modes with
the largest NH deformation contribution are listed.c Perturbed by Fermi resonance (see ref 65).d Not included in the training set.

Spectra of Linear Tetrapyrroles J. Phys. Chem. A, Vol. 103, No. 2, 1999295



the experimental set in order to avoid bias by the use of the
fixed relationship eq 5.

Comparison of Calculated and Experimental Frequencies.
The mean deviations of the calculated from the experimental
frequencies are 11.3 cm-1 for B3LYP, 12.9 cm-1 for HF, and
17.1 cm-1 for MP2. The B3LYP method yields the highest
accuracy although it requires the smallest number of scaling
factors, i.e., 10 as compared to 14 and 11 for HF and MP2,
respectively. Moreover, the accuracy of B3LYP is comparable
for the various training molecules. The deviations are somewhat
smaller than those obtained by Rauhut and Pulay29 for a different
set of 20 training molecules (rms) 12.8 cm-1) but larger than
those obtained by direct scaling of primitive valence force
constants (rms) 8.5 cm-1).51 The quality of the global scaling
factors determined in this study is also demonstrated by a
comparison with the results obtained by individual fitting. For
instance, the rms value for pyrrole is only reduced from 10 to
6 cm-1 when a specifically adjusted set of scaling factors is
employed for the B3LYP force field.

Comparing the results obtained by the two other methods, it
is interesting to note that the accuracy of MP2 is even somewhat
lower than that of HF, implying that a sufficiently substantiated
set of scaling factors can effectively account for the errors arising
from the neglect of electron correlation effects.

Figures 4 and 5 illustrate the accuracies of the various
methods. In addition, the deviations for the NH str, NH def
and NH oop vibrations, and those of the ND isotopomers are
listed in Table 4. Particular attention ought to be paid to these
modes for several reasons. First, in oligopyrroles the nitrogen-
bound hydrogens can readily be exchanged by deuterium.
Second, the NH group is very sensitive to interactions with other
molecules, particularly via hydrogen bonding. Third, in all
training molecules the NH def internal coordinate contributes
significantly to several modes. Hence, several bands are affected
upon deuteration.

In the region of the X-H stretching modes (Figure 4), both
HF and B3LYP are in a very good agreement with average
deviations of ca. 11 cm-1. In contrast, MP2 calculations lead
to much larger deviations (23.8 cm-1) which particularly refer
to the C-H stretchings rather to the N-H stretching modes.
These deviations are systematic inasmuch as the calculated

frequencies are generally too low for the unsaturated but too
high for the saturated molecules. There is an underestimation
of the N-H stretching frequencies for pyrrole, pyrazole, and
imidazole at the B3LYP level. This may be due to an
overestimation of the N-H bond lengths in these compounds
(vide supra). Since the deviations are at most- 23 cm-1 (Table
4) and are small in maleimide and uracil, we restrained from
introducing a separate NH str scaling factor for B3LYP, in
contrast to HF and MP2.

Among the C-H stretchings, there is one remarkable devia-
tion of the B3LYP calculations. It refers to the modeν18 (Bu)
of butadiene which is the symmetric C-H stretching of the CH2
groups. Its frequency is calculated to be 3026 cm-1, but it is
observed at 3056 cm-1 (Table 5).67 Moreover, for the corre-
sponding modeν2 of Ag symmetry an even higher value of 3027
cm-1 is calculated although the deviation from the experimental
frequency (3014 cm-1) is still acceptable. This inversion of the
calculated modes as compared to the experiment is also obtained
by the HF and MP2 calculations which yield frequencies for
the ν2 and ν18 modes quite similar to those obtained by the
B3LYP method. Close-lying frequencies are also predicted by
other force field calculations.15,67,68,71-73 Evidently, the splitting
depends on the size of the basis set and the theoretical method
used.72,73 But even if the correct order is reproduced, the
magnitude of the splitting is much smaller than that of the
experimental one. Only an empirical force field yields a
somewhat larger splitting,74 suggesting that these deviations
reflect a weakness of the quantum chemical calculations.
Although this specific defect may be relevant for applying scaled
quantum chemical force field calculations in general, it has no
impact on our main objective, i.e., the vibrational analysis of
tetrapyrroles in chromoproteins where no data of the C-H
stretching region are available.

The situation is somewhat different for a second major
deviation of the B3LYP calculations which again concerns
modes of butadiene and which are indeed located in a spectral
region of potential interest for the analysis of the RR spectra of
tetrapyrroles. For the modeν10 (Au), the experimental frequency
is at 1013 cm-1 whereas the calculated value is higher by 31
cm-1 (Table 5). This deviation is accompanied by an inversion
of the order of the calculated frequencies for the adjacent modes

Figure 4. Deviations of the calculated frequencies from the experi-
mental data in the range between 2800 and 3600 cm-1. The calculated
frequencies refer to the scaled force fields obtained by HF, MP2, and
B3LYP. The shaded areas indicate the respective rms deviations.

Figure 5. Deviations of the calculated frequencies from the experi-
mental data in the range between 1000 and 1900 cm-1. The calculated
frequencies refer to the scaled force fields obtained by HF, MP2, and
B3LYP. The shaded areas indicate the respective rms deviations.
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ν14 (Bg) and ν23 (Bu), observed at 967 and 991 cm-1 but
calculated at 988 and 986 cm-1, respectively. Both the relatively
large deviations of the modesν10 andν14 as well as the inversion
of theν14/ν23 mode order have a common origin since the modes
ν10 and ν14 include the same internal coordinates, i.e., the
CdC twisting and the C-H oop wagging, albeit with different
relative contributions. In terms of potential energy distribution,
the CdC twisting character of the modesν10 and ν14 is 56%
and 42%, respectively, and the positive deviations of the
calculated frequencies is 31 and 21 cm-1, respectively. Thus, it
is reasonable to assume that these deviations result from the
scaling of the torsional force constants, i.e., the global scaling
factor σ(conj bond tors) is evidently too large for butadiene.
Taking into account that the set of training molecules includes
five heterocycles with conjugated bond systems but only one
noncyclic conjugated compound, i.e., butadiene, it is evident
that this scaling factor optimized in such a way predominantly
compensates the errors of the ring torsional force constants. It
is concluded therefore that the torsional force constants of
butadiene require a specific scaling factor which is smaller than
that for the conjugated cyclic compounds. In fact, by using a
specific scaling factor of 0.8681 for this force constant of
butadiene, the deviations from the experimental frequencies of
the modesν10 and ν14 are drastically reduced to+5 and+6
cm-1, respectively, and in addition, the experimentally observed
order of the modesν23 and ν14 is reproduced. Although this
specific scaling factor was obtained from a fit based on only
seven frequencies and by keeping all other scaling factors
constant, the relatively low standard deviation of(0.0065
compares well with those of the globally optimized scaling
factors. Its value is much lower than that for the single bond

and conjugated bond torsion (Table 2). When all scaling factors
are re-optimized as well, nearly the same value for the butadiene
torsional scaling factor (0.8622) is obtained, and the other
scaling factors vary by less than 0.2% accompanied by only a
marginal improvement of the rms value.

To determine whether the use of a specific scaling factor for
noncyclic double bonds is justified, we have calculated the
vibrational spectrum of ethene on the basis of both the
10-parameter and the extended 11-parameter scaling factor set.
Ethene exhibits only one twisting mode which, due to its
symmetry (Au), is separated from all other modes. It is observed
at 1023 cm-1 (taken from ref 15), whereas the calculated
frequencies are at 1042 and 997 cm-1 when scaled with the
10- and 11-parameter sets, respectively. In this case the specific
scaling factor for the torsional force constant of the double bond
in a noncyclic molecule yields an even larger deviation from
the experimental value (-26 cm-1) than that obtained with the
standard 10-parameter set (+19 cm-1). Thus, it appears that
the introduction of the additional scaling factor for a double
bond torsion may only be required for linear polyenes. Whether
in this regard the exocyclic double bonds in the target molecules,
i.e., the methine bridges and the vinyl substituents, can be
regarded as isolated (ethene-like) or as conjugated double bonds
(butadiene-like) remains to be checked by the vibrational
analyses of dipyrrolic test molecules.

Similar systematic deviations for the butadiene CH oop modes
are also noted for the MP2 calculation (Table 5). Also in this
case, a specific scaling factor for the butadiene torsional
coordinates leads to a substantial improvement. The optimized
value of this scaling factor, obtained by keeping all other scaling
factors unchanged, is 0.8440( 0.0083 which happens to be

TABLE 5: Calculated and Experimental Frequencies (in cm-1) of Butadienea

mode νexp
b νexp

c B3LYPd ∆ν mode compositione B3LYPf HF MP2

Ag
ν1 3101 3100.3 3105 4 2‚32 C3-H7 str; 2‚17 C3-H9 str (CH2 a-str) 3105 3103 3105
ν2 3014 3013.0 3027 13 2‚31 C3-H9 str; 2‚14 C3-H7 str (CH2 s-str) 3027 3037 3020
ν3 3014 3013.0 3010 -4 2‚44 C-H str 3010 3022 3003
ν4 1643 1643.9 1668 25 2‚30 CdC str; 10 C-C str 1668 1666 1665
ν5 1442 1440.8 1438 -4 2‚38 CH2 def 1438 1437 1427
ν6 1291g 1276.5 1291 0 2‚20 CH rock; 2‚11 CdC str 1291 1278 1286
ν7 1205 1203.0 1209 4 30 C-C str; 2‚13 CH2 rock; 2‚13 CH rock 1209 1202 1211
ν8 890 887.8 878 -12 45 C-C str; 2‚23 CH2 rock 878 867 876
ν9 513 511.6 511 -3 2‚36 CdC-C def 511 500 512

Au

ν10 1013.2 1014.0 1045 31 2‚28 CdC twist, 2‚19 CH wag 1018 1030 1059
ν11 907.8 908.1 922 14 2‚49 CH2 wag 922 922 945
ν12 524.5 524.6 529 5 2‚22 CdC twist, 2‚22 CH wag, 11 C-C tors 516 512 539
ν13 163 162.5 172 9 84 tors 166 150 158

Bg

ν14 967 965.4 988 21 2‚29 CH wag, 2‚21 CdC twist 972 983 1006
ν15 911 908.0 926 15 2‚49 CH2 wag 925 923 946
ν16 753 751.9 768 15 2‚28 CdC twist, 2‚21 CH wag 748 750 781

Bu

ν17 3102 3100.6 3105 3 2‚32 C3-H7 str, 2‚17 C3-H9 str (CH2 a-str) 3105 3104 3105
ν18 3056 3054.8 3026 -30 2‚31 C3-H9 str, 2‚14 C3-H7 str (CH2 s-str) 3026 3037 3019
ν19 3010g 2984.1 3020 10 2‚44 C-H str 3020 3027 3010
ν20 1599 1596.5 1612 13 2‚35 CdC str, 2‚13 CH2 def 1612 1585 1597
ν21 1385 1380.7 1377 -8 2‚36 CH2 def 1377 1365 1369
ν22 1296.2 1294.2 1297 1 2‚34 CH rock 1297 1288 1292
ν23 990.6 990.3 986 -5 2‚38 CH2 rock, 2‚10 CH rock 986 980 981
ν24 301 301 296 -5 2‚47 CdC-C def 296 291 296
rms 13.5 10.8 14.3 20.4

a Numbering of the atoms and definition of the internal coordinates are according to Pulay et al.15 b Data which were taken from Bock et al.67

and used for the global fitting.c Taken from ref 68. Further experimental data are reported in refs 69-71. d Calculated with the 10-parameter set.
e Potential energy distributions are given in percentage; only contributions larger than 10% are listed. In the case of two symmetry-equivalent
internal coordinates, only one of them is indicated.f Calculated with the 10-parameter set but using a specific scaling factor (0.8681) for the
torsional coordinates.g Corrected for Fermi resonance.
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nearly the same as the scaling factor for the single bond torsion
(0.8488). Using this latter scaling factor for the butadiene
torsional coordinates, the subsequent reoptimization of all
scaling factors reduces the total rms error from 17.1 to 16.5
cm-1. Since this improvement is just due to the better agreement
for the butadiene CH oop modes, i.e., due to a molecule-specific
scaling, we retained the original set of global scaling factors
for MP2 as in the case of B3LYP (Table 2).

For the B3LYP-calculated frequencies, there are three further
relatively large deviations which, however, appear to arise from
the lack of reliable experimental data. The IR-inactive CH oop
mode (A2) of ND-pyrrole was assigned to a Raman band of the
liquid sample observed at 712 cm-1.56 For a comparison with
the calculated frequency at 668 cm-1, a correction for the “gas-
liquid” shift was employed for which a value of-9 cm-1 has
been estimated by Orza et al.75 Then the corrected frequency
corresponds to a deviation of-35 cm-1. However, this
correction appears to be too small in view of the substantially
larger “gas-liquid” shift (-21 cm-1) of pyrrole which could be
determined experimentally.57 Adopting this-21-cm-1 correction
also for the CH oop mode of ND-pyrrole reduces the deviation
to -23 cm-1. This value is still relatively large. However, we
note that similar deviations are associated with some modes of
the same symmetry although they are not systematic for the
CH oop modes. For the observed oop modes of 12 asymmetri-
cally deuterated pyrroles (A2 f A′′), the B3LYP force field
yields a mean deviation of no more than 11 cm-1, which is
essentially the same as the rms value for the complete set of
training molecules.

For the ring torsional modes of maleimide andN-deuterated
maleimide the B3LYP calculations yield deviations of-30 and
-42 cm-1, respectively. The corresponding experimental IR data
(163 and 175 cm-1, respectively) were taken from measurements
of benzene solutions and polyethylene pellets, i.e., nonpolar
solvents.60 It is likely that under these conditions maleimide
forms dimers similar to the solid state.34 B3LYP calculations
indicate that dimer formation has a pronounced effect on this
torsional mode which shifts up from 133 to 151 cm-1 in both
the nondeuterated and the deuterated species. If these values
are compared with the experimental data, the deviations are
substantially reduced to-12 and-24 cm-1, respectively.

Effect of Hydrogen Bonding.Molecules which include proton
donating and accepting functions such as imino and carbonyl

groups can be subject to strong hydrogen bonding interactions
which affect the molecular structures and frequencies. This is
true for several compounds of the sets of training, test, and target
molecules studied in this work. Therefore, these effects require
special attention, particularly, since it was shown by Del Bene
et al.66 that B3LYP failed to predict reliable binding energies,
intermolecular distances, and frequency shifts of the X-H
stretchings induced by hydrogen bonding for a variety of small
hydrogen-bonded complexes.

The tetrapyrrole target molecules may undergo inter- and
intramolecular hydrogen bonding interactions. In the crystalline
state, BVE forms centrosymmetric dimers via intermolecular
hydrogen bonding between the NH group of a peripheral ring
of one molecule and the CdO group of a second molecule.17

For a model compound of PCB, Kratky et al.76 demonstrated
that such interactions occur at ring D. To assess the structural
and spectral consequences of these hydrogen bonding interac-
tions we have chosen maleimide as a model compound for ring
D of PCB (corresponding to either rings A and D of BVE) and
extended the B3LYP calculations to the dimeric entity of
maleimide.

The geometry optimization yields a dimeric structure ofCi

symmetry. This calculated structure as well as that of the
monomer can be compared with experimental data, i.e., the gas-
phase structure (monomer) obtained by electron diffraction42

and the dimeric structure available from X-ray crystallography.34

The main differences∆exp between the experimentally deter-
mined structures concern a shortening of the C(2)-N bond and
an elongation of the C(2)dO bond in the crystal (Table 6). In
fact, the calculations largely reproduce these changes although
∆Rexp(C(2)-N) is larger by 0.02 Å than the difference for this
coordinate between the calculated dimer and monomer structures
(∆Rcalc). This quantitative discrepancy is due to a slight
underestimation of the calculated bond length in the monomer
and an overestimation of this coordinate in the dimer. In
addition, the calculations reveal the expected increase of the
N-H bond length in the dimer.

As expected, the most pronounced effects of hydrogen
bonding on the vibrational spectra are noted for the N-H
stretching modes (downshift) and the N-H def and oop modes
(upshift) (Table 6). The calculated values for the monomers
agree very well with the corresponding experimental data, and

TABLE 6: Selected Structural and Spectral Data for Maleimide Monomer and Dimer

Bond Lengths (Å)

experimentala calculated (B3LYP)

monomer dimer ∆Rexp monomer dimer ∆Rcalc

C(2)-N 1.409 1.375 -0.034 1.398 1.381 -0.017
(-0.043)b

C(2)-O 1.206 1.226 0.020 1.212 1.224 0.012
(0.011)b

N-H 1.011 1.026 0.015

Frequencies of NH Modes (cm-1)

experimentalc calculated (B3LYP)d

monomer dimer ∆νexp monomer dimer ∆νcalc

NH str 3486 3255 -231 3492 3264 -228
NH def 1346 1360 +14 1328 1394 +66

(1350) (+22)
NH oop 505 740 +235 521 807 +286

(734) (+213)

a The experimental data were taken from refs 42 and 34 for the gas-phase structure (monomer) and crystal structure (mean values of dimers),
respectively.b Unpublished X-ray data from our laboratory.c The experimental data refer to Ar matrix IR spectra.61 d Values in parentheses were
obtained by employing specific scaling factors of 0.89 and 0.83 for the deformation and out-of-plane force constants, respectively.
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the shifts induced by dimerization are reproduced qualitatively
as well. However, the absolute values for the dimers display
substantial deviations with regard to the experimentally deter-
mined frequencies. These deviations can readily be removed
by modifying the scaling factors for the NH def and NH oop
internal coordinates. While in this particular case of the
maleimide dimer the NH str coordinate needs no adjustment,
substantial modifications are needed for the NH def (from
0.9693 to 0.89) and NH oop (from 1.0120 to 0.83). Similar
results were obtained for other representatives of the sets of
training and test molecules, implying that hydrogen bonding
interactions may require specific scaling factors for the NH
modes.

IV. Intensities. For the test and target molecules, the number
of normal modes in the spectral region between 200 and 1800
cm-1 is between 100 and 150 corresponding to an average
“mode density” of up to 1 mode per 10 cm-1. Even for an
accuracy of the frequency calculation between 10 and 15 cm-1,
the spectra analysis of such large molecules would not provide
unambiguous results in many cases. Hence, we have calculated
IR, Raman, and RR intensities in order to gain further criteria
for the band assignments.

The matrix elements of the dipole moment derivatives which
determine the IR intensities are evaluated efficiently in the
GAUSSIAN94 program by means of analytical methods. In
contrast, the algorithm implemented for the calculation of the
polarizability derivatives, which are required for evaluating
Raman intensities is prohibitively time-consuming for large
molecules. We have therefore employed an alternative approach
which is described in detail in Appendix II. In brief, for off-
resonance excitation (ν0), the Raman intensityIRa,sof a normal

mode s with the frequencyνs is given by eq 6,77

whereR′ andγ′ are the derivatives of the mean polarizability
R and its anisotropyγ with respect to the normal modes.
Equation 6 refers to a setup with the incident light in the
x-direction, being linearly polarized in thez-direction, and the
scattered light observed in they-direction. Using the finite
electric field method,78 the derivativesR′ andγ′ were evaluated
by 2-fold numerical differentiation of the forces acting on the
atoms with respect to an applied electric field. To obtain
numerically accurate Raman intensities, it was essential to use
an algorithm which effectively minimizes the errors associated
with the numerical differentiation as well as those arising from
other sources (Appendix II).

Comparison of Calculated and Experimental IR Intensities.
In general, there is good agreement between the calculated and
experimental IR intensities. As an example, we wish to discuss
the spectra of butadiene for which experimental data are
available (Table 7).68 For this molecule, only the Au and Bu

modes are IR active. The inspection of the data reveals that
there is one major deviation. It concerns the modeν19 which
has been found to be perturbed by Fermi resonance.67 As a
quantitative measure for comparing calculated and experimental
intensities one may use either the relative deviation∆I/Iexp that
weights more strongly deviations for bands of weak intensities,
or the rms error giving greater weight to deviations of strong

TABLE 7: Calculated and Experimental Infrared and Raman Intensities of Butadienea

experimental B3LYP/6-31G* B3LYP/6-31++G** HF/6-31G* MP2/6-31G*

mode I IR
b IRa

c I IR IRa I IR IRa I IR IRa I IR IRa

Ag

ν1 56 32.3 18.8 21.9 73.0
ν2 76 40.9 29.2 29.2 114.5
ν3 11.8 6.1 3.9 25.2
ν4 100 100.0 100.0 100.0 100.0
ν5 17 25.6 14.5 18.0 52.3
ν6 12d 37.0 27.9 39.4 48.3
ν7 20 30.3 22.1 24.3 61.0
ν8 0.3 0.8 0.5 0.3
ν9 19 21.2 13.0 14.7 29.3

Au

ν10 32.4 26.2 40.6 29.9 43.7
ν11 63.01 78.5 94.7 102.4 75.5
ν12 16.18 7.7 13.4 12.2 9.5
ν13 0.2 0.7 0.1 0.2

Bg

ν14 3.1 3.2 5.6 2.6
ν15 3.6 11.6 7.3 2.3
ν16 23.0 3.6 23.4 65.9

Bu

ν17 28.5 33.1 27.9 44.6 23.1
ν18 12.8 8.5 9.7 17.4 4.4
ν19 10.9d 31.9 25.9 28.7 22.2
ν20 17.33 12.4 23.6 17.2 6.6
ν21 2.96 2.6 3.1 1.3 3.8
ν22 1.94 2.3 2.5 2.9 2.2
ν23 1.7 2.3 2.6 2.3 2.6
ν24 2.6 2.6 3.4 2.0
∆I/Iexp

e 27 35 27 29 37 30 37 105
rms 6.8 11.2 14.4 7.8

a IR intensities are given in km/mol; Raman intensities are given as relative intensities with respect to the strongest band (ν4). b Taken from ref
68. c Taken from ref 80; the intensity values were normalized with respect to the strongest band (ν4). d Intensities perturbed by Fermi resonance.
e Relative deviation given in percentage. The modesν19 andν6 were not included. See text for further explanations.

IRa,s∝ (45(R′)2 + 7(γ′)2)
(ν0 - νs)

4

νs(1 - exp(-
hνs

kT))
(6)
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bands. Neglecting the modeν19, it is evident that according to
both criteria the B3LYP method provides the best agreement
whereas the HF and MP2 results yield similar relative deviations.
The rms error for HF is larger compared to MP2 which is
essentially due to the relatively strong deviation for the mode
ν11.

In view of the good performance of B3LYP for IR intensity
calculations, one would also expect a good agreement for the
dipole moments, which is in fact confirmed for those molecules
for which reliable experimental data are available, for instance,
pyrrole,µcalc ) 1.91 D,µexp ) 1.74 D35 (1.8481); pyrazole,µcalc

) 2.29 D,µexp ) 2.21 D;37 imidazole,µcalc ) 3.72 D,µexp )
3.67 D;36 propane,µcalc ) 0.06 D, µexp ) 0.08 D.40 In this
respect, the present results are in line with a recent study by
De Proft et al.28 who also found that B3LYP leads to semi-
quantitative predictions for the IR intensities, and to a good
agreement for the dipole moments. The latter, however, could
be definitely improved by employing a triple-ú polarization basis
set.

According to Miller et al.,82 a better performance for IR
intensity calculations can be obtained by using a 6-31++G**
basis set which includes polarization functions for the hydrogens
and diffuse functions and yet is still a relatively compact basis
set. In the case of butadiene, such an improvement was not found
for the B3LYP calculation, as the relative deviation is basically
the same and the rms error is even increased, mainly because
for the strongest IR band (ν11) the calculated intensity is much
too large so that the slightly better agreement for the remaining
modes is overridden. For ethane, however, the 6-31++G** basis
set leads to a substantial improvement as compared to the
6-31G* basis set.

Comparison of Calculated and Experimental RAMAN Inten-
sities.It has been shown that accurate Raman intensity calcula-
tions require large basis sets including diffuse and polarization
functions.83 Hence, it is quite remarkable that B3LYP and HF
reproduce the experimental data in a qualitative way (Table 7).
For the Raman-active Ag and Bg modes of butadiene, we note
two major deviations for all methods. The experimentally
observed Raman intensity of modeν6 is probably weakened by
a Fermi resonance. As a consequence, the calculated intensities
of this mode are too high. A similar overestimation has been
already mentioned for the equally perturbed IR-active modeν19.
In addition, a considerable Raman intensity is calculated with
the 6-31G* basis set for the modeν16 which, however, has no
counterpart in the experimental spectrum. On the B3LYP level,
this deviation is substantially reduced by using the 6-31++G**
basis set, although the agreement for the remaining Raman-
active modes is not significantly improved.

The hydrogen-bonded maleimide dimer represents a second
instructive example for the comparison between the experimental
and calculated Raman spectra (Figure 6). The vibrational
assignments which are based on the IR and Raman spectra will
be discussed in detail elsewhere.30a In the region below 1900
cm-1, the B3LYP calculations provide a good agreement with
the experimental data even for the 6-31G* basis set. The
intensity pattern is nicely reproduced although for some modes
for which the experiment reveals relatively weak intensities,
the calculated intensities are somewhat too high. These devia-
tions are reduced with the 6-31++G** basis set which gives a
better agreement for the weaker Raman bands. Serious devia-
tions, however, are noted in the region of the C-H and N-H
stretching modes, the calculated intensities of which are far too
high. This is particularly true for the N-H stretching (ν1). The

6-31G* basis set yields an intensity which is even three times
higher than that of the modeν3. In contrast, the intensity ratio
ν1/ν3 in the experimental spectrum is less than 0.1. Again, the
larger basis set leads to an improvement as the relative intensities
of the N-H and C-H stretching modes are substantially
reduced with respect to the most intense band in the experi-
mental spectrum at ca. 1760 cm-1. This result is not unexpected
since the inclusion of polarization functions for the hydrogen
atoms and of diffuse functions should provide the greatest
relative improvement for the description of the hydrogen atoms.
Hence, this should have a particularly strong impact on those
modes which are dominated by vibrations involving hydrogen
atoms.

In general, however, the examples discussed in this work as
well as the results we have obtained for other training and test
molecules indicate that even with the 6-31G* basis set B3LYP
calculations can yield satisfactory semiquantitative Raman
intensities. In combination with the calculated IR intensities,
they can serve as valuable additional criteria for the vibrational
assignments of medium-size molecules.

For molecules of the size of the training and test molecules,
nonresonant conditions for measuring the Raman spectra can
readily be established. The situation is different for the target
molecules since due to their extendedπ-electron systems they
exhibit strong electronic transitions in the visible range of the
spectrum. Hence, even near-infrared excitation (1064 nm)
always provides a substantial preresonance enhancement so that
eq 6 is not adequate for calculating the Raman intensities. Thus,
we have also calculated RR intensities using the “bond order”
approximation according to Peticolas and co-workers.84 This
approach, which has already been employed in our previous
semiempirical study,16 gives at least reasonable estimates for

Figure 6. Experimental and calculated Raman spectra of maleimide.
A, D, Raman spectrum of the dimer calculated with B3LYP and 6-31G*
basis set; C, F, Raman spectrum of the dimer calculated with B3LYP
and 6-31++G** basis set; B, E, experimental Raman spectrum of the
solid obtained with 1064-nm excitation at ambient temperature; further
experimental details will be given elsewhere.30a The intensity scale of
D is reduced by a factor of 0.6 relative to A.
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those modes which are dominated by the stretching vibrations
of the chromophoric skeleton.

Conclusions

We have developed a three-step strategy for calculating
vibrational spectra of linear tetrapyrroles which serve as
prosthetic groups in various chromoproteins. In contrast to cyclic
tetrapyrroles, i.e., porphyrins, no symmetry selection rules
facilitate the spectra analysis of these molecules. Thus, particu-
larly high demands are imposed on the accuracy and reliability
of the present approach.

These requirements were best fulfilled by the B3LYP method.
Deviations of the calculated structures approach the accuracy
of the experimental methods. The mean deviation of 11.3 cm-1

for the frequency calculations corresponds to the range of
frequency variations induced by hydrophobic or electrostatic
interactions as they are noted, e.g., in the IR spectra measured
in KBr pellets, CCl4 solutions, and Ar matrixes. Such “envi-
ronmental” effects were not taken into account in the calcula-
tions. In addition, within the set of training molecules the rms
error does not depend on the size of the molecules, i.e., neither
on the number of heavy atoms nor the total number of atoms.
Thus, one may expect a comparable accuracy for the frequency
determination also for larger molecules including linear tet-
rapyrroles.

For such large molecules the calculated IR and Raman
intensities are necessary additional criteria for the vibrational
assignments. The lack of a sufficiently large body of standard-
ized experimental data does not allow a quantitative assessment
of accuracy of the intensity calculations. However, as far as a
comparison with measured spectra was possible, a semiquan-
titative prediction, i.e., classification in terms of very strong,
strong, medium, weak, and very weak bands, of both the IR
and the Raman intensities was achieved. A specific difficulty
of the vibrational analysis of linear tetrapyrroles is associated
with their capability to form hydrogen bonds. Such intermo-
lecular interactions are likely to play an important role also for
the protein-bound chromophores. Special emphasis was therefore
laid on the analysis of the impact of hydrogen bonding
interactions on the accuracy of the calculated structural and
spectral data. It was found that, in general, the calculations can
qualitatively predict the consequences of hydrogen bonding
interactions on the molecular structures and vibrational spectra.
However, to maintain the required accuracy of the frequency
calculations, specific scaling factors have to be adopted for the
force constants of the N-H stretching, bending, and oop
wagging. It remains to be shown whether these scaling factors
are transferable to molecular systems of different hydrogen bond
geometries and strengths. Regardless of this uncertainty,
however, it can be concluded that the present approach holds
promise to provide calculated spectra of linear tetrapyrroles
which allow for a reliable vibrational assignment of most of
the observed bands and, hence, may contribute substantially to
the interpretation of the RR spectra of the protein-bound
chromophores.
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Appendix I: Anharmonicity Corrections

The derivation of the anharmonicity correction is based on
(i) the Morse model for an anharmonic oscillator85 and (ii) on

the assumption that the scaling factor can be factorized into an
anharmonic (σa) and a quantum chemical contribution (σq) (see
eq 2). We will consider specifically an X-H and X-D
oscillator, but the results can be easily generalized to other
isotopomers.

The force constant for a harmonic oscillator is given by eq
A1,

where µXH is the reduced mass andωe,XH the harmonic
frequency which is related to the anharmonic frequencyνXH of
the first vibrational level of a Morse oscillator according to eq
A2.

The anharmonicity constantxe,XH depends on the potential
parameter and onωe,XH.86 For the effective force constant
(FXH)eff which refers toνXH one obtains from eqs A1 and A2

The scaling factors are optimized in such a way that the
calculated (harmonic) frequencies match the observed (anhar-
monic) frequencies, which implies that the scaled force constant
(FXH)σ (see eq 5) equals the true (anharmonic) force constant
(FXH)eff, i.e.,

Insertion of eqs A1 and A3 into eq A4 yields eq A5

In an analogous way, one obtains (σXD)a for the force constant
of the X-D vibration, taking into account that within the Morse
potential approximationxe,XD is related toxe,XH according to

so that eq A7 is readily obtained,

Finally, a correction factor (σXD)c is introduced which is given
by the ratio of the anharmonic corrections of the XD and XH
oscillators,

Combining eqs A5, A7, and A8 yields the explicit expression
for (σXD)c in eq 3.

Appendix II: Raman Intensities

According to eq 6, the Raman intensityIRa,s of the sth
fundamental is related to the derivatives of the polarizability
R′and its anisotropyγ′ with respect to thesth normal mode,
whereR andγ are given by eqs A9 and A10, respectively:

(FXH)h ) µXH (2πωe,XH)2 (A1)

νXH ) ωe,XH(1 - 2xe,XH) (A2)

(FXH)eff ) µXH(1 - 2xe,XH)2(2πωe,XH)2 (A3)

(FXH)eff ) (FXH)σ ) (σXH)q(σXH)aFXH ) (σXH)a(FXH)h (A4)

(σXH)a ) (1 - 2xe,XH)2 (A5)

xe,XD ) xe,XHxµXH

µXD
(A6)

(σXD)a ) (1 - 2xe,XHxµXH

µXD
)2

(A7)

(σXD)c )
(σXD)a

(σXH)a
(A8)
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These derivatives are obtained from the derivatives of the
polarizability componentsRij (i,j ) x, y, z) with respect to the
Cartesian axesX, i.e., ∂Rij/∂X ) (Rij)′, after transformation to
normal coordinates. The Cartesian derivatives (Rij)′ are calcu
lated according to eq A11,78

whereEi andEj are the components of the incident electrical
field in i and j direction and FX the (analytically evaluated)
forces acting on the atoms of the molecule induced by the
electrical field.

The numerical calculation of (Rij)′ is associated with errors
from different sources: (i) a truncation error due to the neglect
of higher order terms in the Taylor expansion of the differentia-
tion formula, (ii) a cancellation error due to the loss of significant
digits upon calculating differences, (iii) an integration error due
to the grid approximation in the numerical integration of matrix
elements in the B3LYP method, (iv) an error due to the
incomplete geometry optimization resulting in nonnegligible
residual forces at the atoms. The reduction of the effect of the
errors ii, iii, and iv requires relatively large values of forces
which, however, may cause an increase of the truncation error
(i) for a low-order differentiation formula.

In the present approach we have employed a relatively large
step size forEi and a fourth-order differentiation formula which
besides its accuracy has the additional advantage to allow an
assessment of the errors due the numerical differentiation. This
procedure consists of three steps. First, the second-order
derivatives of the forcesFX, or of a general functionf, i.e.,∂2f/
∂Ei∂Ej ) (fij)′′, are calculated for chosen values ofE ) Ei ) Ej

using the well-known second order differentiation formulas,87

i.e.,

and

where∆(E) is defined by

An explicit expression for the error term O(E2) in eqs A12 and
A13 is given elsewhere.88

In the second step, the value forE is doubled to calculate
the quantities (fii(2E))′′ and (fij(2E))′′ according to eqs A12, A13,
and A14. Finally, more accurate values〈fii〉′′ and 〈fij〉′′ are
obtained from

and

where the remainder term R(f′′′′′′) contains sixth-order mixed
derivatives.

While eq A15 corresponds to a formula published previ-
ously,89 eq A16 is derived from eq A13 by inserting the Taylor
expansions for the function valuesf(Ei,Ej) at the different grid
points into the expansions∆(E) and ∆(2E) (eq A14). These
expansions which were carried out up to the sixth order were
combined with appropriate weighting so that the fourth-order
terms cancel.

Instead of Eq (A14), one may use the symmetric function
∆′(E) ) f(Ei,Ej) + f(-Ei,-Ej) - f(Ei,-Ej) - f(-Ei,Ej) involving
two additional off-axis points for deriving an expression
analogous to eq A16. Such a formula has been reported in an
equivalent form by Kurtz et al.90 The slightly higher accuracy
associated with this symmetric function, however, does not
justify the increase of the computational effort by ca.1/3.

The values forE were chosen such that the maximum value
of the electric-field induced change of the forces at the atoms
was at least 2 orders of magnitude larger than that of the residual
forces for the unperturbed structure. Taking into account that
even within the TIGHT option for the geometry optimization,
maximum residual forces of ca. 0.001 au may exist, we generally
used anE value of 0.004 au, whereas greater values may cause
SCF convergence problems in particular in the case of large
molecules such as tetrapyrroles.

Comparing the values determined for (fii(E))′′, (fij(E))′′,
〈fii〉′′, and 〈fij〉′′, it is possible to estimate the error of the
numerical differentiation. It was found that the accuracy of the
calculated polarizability derivatives was better than 1% for
numerically large matrix elements but lower for very small
matrix elements.
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